The induction-based heat consumption meters operate on the principle of electromagnetic induction. This type of meter is used to measure rates of flow and consumption of energy of electrically conductive liquids. They are particulary suitable for applications where conventional mechanical types are not sufficiently reliabe and accurate and also when pressure drop is not acceptable. The only factor limiting their applicability is a certain minimum electric conductivity of the liquid and low content of ferromagnetic particles. Measuring device consists of sensor, the pair of dual resistance termometers and electronic converter. The microprocessor controlled converter is provided with digital display, five push buttons, interface connector RS232 and terminals for connecting the sensor to external input/output equipment.

High measuring accuracy

High accuracy of measurement is achieved by the use of very accurate converter ADC processing output signals from the sensor, SMD technology and digital correction of errors at low flows. The technological design adopted ensures high temperature and time stability of measurement.

Simple to operate

 \oplus

The five push buttons enable to select a wide range of modes and adjustable parameters from a well-organized menu in a two-line display. Even simpler operation is attainable by means of a detachable computer.

Damping and insensitivity

Different damping modes and magnitudes can be preset when measuring the nonhomogeneous media with highly fluctuating flows. Also selectable is the level of measurement insensitivity at very low rates of low.

Data protection

The converter HC2 stores in its memory the measured data and prevents their loss at power failures. It memorizes also the last four recorded errors. In addition, the most important data (calibration constans, cumulated values and oarameters of the selected operational modes) are also stored in the nonvolatile memory EEPROM.

Real time and sampling

The converter HC2 is equipped with a real-time clock. The memory can store up to 500 data automatically measured in the preset periods of real time and time intervals, e.g. fifteen minutes daily maximum at a preset time. It is possible to store energy and the volume of flow in both directions; two temperatures data and temperature difference (for these quantities it is possible to select the record of average, maximal or minimal value in time interval, or instantaneous values in the time of recording)

Dosign

The converter HC2 enables the meter to be used for dosing of a energy or volume of liquid. Dosing can be initiated by means of push button or external signal. The stop of dosing is governed by the converter. Dosing takes place on the background of flow measurement.

Inputs and outputs

The converter HC2 provides for galvanically separated connections of the input/output equipments to take place simultaneously. Available is also a galvanically separated 24 V DC power supply. The input/output equipment can be connected simultaneously to:

- the serial port input
- the serial port output
- the analogue current output
- frequency output
- initiation of dosign
- two multifunctional outputs

The independent multifunctional outputs enable transfer of selected impulses, one or two level comparison and start/stop of dosign. The outputs can be selected on-site with either open collector or on-off contact relay.

Communication

The standard HC2 converter is equipped with a complete serial interface RS232 enabling communication with PC and connection to a modem. It can be complemented also with connection of galvanically separated converter to a RS485 bus. From communication point of view the converter is designed as an open system to which other buses can be attached. Its facilities enable integration of the flowmeter into metering, regulation and data collection system.

SIMA HC2

CONVERTOR

Technical data

Power supply

 \oplus

 $- \bigcirc -$

Power consumption Protection category Working temperature

Storage temperature

Measurement range of flow **Measurement error**

Measurement range of temperature Accuracy of calculation temperature difference Indication

Manual control Input (galv. separated) Outputs (galv. separated)

Serial ports (galv. separated)

Casing material Weight

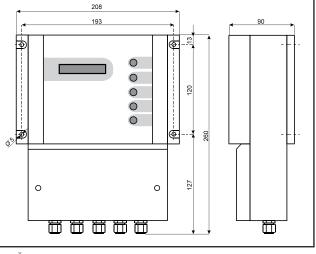
230 V (+10 %,-15 %), 50/60 Hz 115 V (+10 %,-15 %), 50/60 Hz 12 VA max. IP 66 -5 °C up to +45 °C (protect against direct sun shine) -20 °C až +80 °C (relative humidity max. 85 %)

0,1 to 10 m/s \leq 0,5 % of measured value in the range 5÷100 % Qmax.

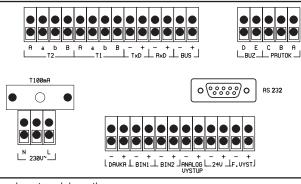
+2 °C to +150 °C

 $Ec \leq \pm (0,5 + \Delta t \min/\Delta t) \%$ two-line alphanumeric display 2 x 16 characters five buttons

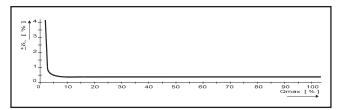
- start of the dose : 10 mA max., diode


- source 24 Vss, non-stabilised (Ri = 470 W; C = 470 mF)- analogue current output, active $(0\div 20 \text{ mA or } 4\div 20 \text{ mA}, \text{ load} \le 800 \text{ W})$ maximal current for momentary
- rate of flow can be set as desired - frequency output (optional range) (2 Hz÷20 kHz, 30 V/5 mA max; max. 50 kHz, 30 V/1 mA; open collector)

- 2 x multi-functional volume or energy impulses, single or double- level comparison, start and stop of dose (open collector 30 V/20 mA max., switch-on or off contact 120 V/800 mA max). optional quantities: rate of flow, energy, upper and lower temperature, temperature difference


- current collector

- T x D output, 30 V/20 mA max.
- R x D input, 10 mA max., diode
- complete serial interface RS 232
- on connector Canon 9
- collector RS 485 (on request)


ABS 2 kg

svorkovnice elektroniky

technická přesnost průtokoměru

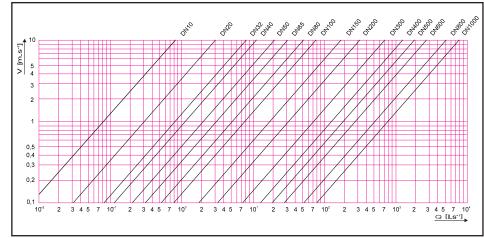
SIMA HC2

SENSOR; THERMOMETERS

Technical data

Sensor

Conductivity	
of measured liquid	$\geq 5 \ \mu \text{S.cm}^{-1}$
Protection category	IP 65,67, 68
Lining	hard rubber, halar, teflon
PN	0,6 ÷ 4,0 MPa
Electrodes	standard: stainless steel
	chemical resistant: platinum
Flanges	ČSN, DIN, ANSI
Cable length	standard: 5 m
-	max: 30 m


Thermometers

Pt 100 - standard, Pt 500 - on request Туре **Dual thermometer error** Et= $\pm/-(0.5 \pm 3\Delta t \min/\Delta t)$ % - with connecting cable Cable length

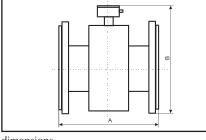
according to thermometer manufacturer - with connecting head 50 m max (quad)

DN (mm)	DN (inch)	Qmax (I.s-1)	Qmax (I.min-1)	Qmax (m3.h-1)	A (mm)	A* (mm)	B (mm)	Remark
10	3/8	0,08 ÷ 0,8	4,7 ÷ 47	0,3 ÷ 2,8	150	150	170	Flanged design
20	3/4	0,31 ÷ 3,1	19 ÷ 188	1,1 ÷ 11,3	150	150	195	Flanged design
32	1 1/4	0,8 ÷ 8	48 ÷ 485	2,9 ÷ 29	150	150	200	Flanged design
40	1 1/2	1,3 ÷ 13	75 ÷ 755	4,5 ÷ 45	150	270	215	Flanged design
50	2	2,0 ÷ 20	118 ÷ 1 180	7 ÷ 71	200	270	225	Flanged design
65	2 1/2	3,3 ÷ 33	199 ÷ 1 990	12 ÷ 120	200	300	250	Flanged design
80	3	5,0 ÷ 50	302 ÷ 3 020	18 ÷ 185	200	300	260	Flanged design
100	4	8 ÷ 80	471 ÷ 4 715	28 ÷ 285	250	300	290	Flanged design
150	6	18 ÷ 180	1 060 ÷ 10 605	64 ÷ 640	300	400	350	Flanged design
200	8	31 ÷ 315	1 885 ÷ 18 850	113 ÷ 1 135	350	450	420	Flanged design
300	12	71 ÷ 710	4 241 ÷ 42 415	254 ÷ 2 545	500	520	550	Flanged design
400	16	126 ÷ 1 260	7 540 ÷ 75 400	452 ÷ 4 525	600	520	675	Flanged design
500	20	196 ÷ 1 965	11 781 ÷ 117 810	707 ÷ 7 070	600	520	760	Flanged design
600	24	283 ÷ 2 830	16 965 ÷ 169 650	1 018 ÷ 10 180	600	600	850	Flanged design
800	32	503 ÷ 5 030	30 159 ÷ 301 595	1 810 ÷ 18 100	800	800	1035	Flanged design
1000	40	785 ÷ 7 855	47 124 ÷ 471 240	2 827 ÷ 28 275	1000	1000	1240	Flanged design

The indicated Qmax values are recommended values and correspond to speeds within the range of 1 m/s \div 10 m/s. On request also: DN 15 (1/2"), 25 (1"), 125 (5"), 250 (10"), 350 (14"), 700 (25"), 900 (36") The assembly dimensions in the column marked (A[§]) correspond to an earlier series of sensor models. The assembly dimensions in the column marked (B) are only informative with regard to their variability

Dependency of volume rate of flow on momentary flow speed in tubes of different inner diameters

CMYK



m, titan, hastelloy

dimensions

- **2** thermometers Pt 100 (with connecting head)
- **3** flanged design DN 100 lining: teflon (IP 67)

Manufacturing and post-sales service by:

SIMA servis spol. s r.o.

Vídeňská 119 619 00 Brno, CZ tel./fax: +420 547 212 637 tel.: +420 547 213 891 e-mail: simaservis@simaservis.cz www.simaservis.cz

Sales and Customer Relations:

 \oplus